Sequential adaptive variables and subject selection for GEE methods
Zimu Chen,
Zhanfeng Wang and
Yuan‐chin Ivan Chang
Biometrics, 2020, vol. 76, issue 2, 496-507
Abstract:
Modeling correlated or highly stratified multiple‐response data is a common data analysis task in many applications, such as those in large epidemiological studies or multisite cohort studies. The generalized estimating equations method is a popular statistical method used to analyze these kinds of data, because it can manage many types of unmeasured dependence among outcomes. Collecting large amounts of highly stratified or correlated response data is time‐consuming; thus, the use of a more aggressive sampling strategy that can accelerate this process—such as the active‐learning methods found in the machine‐learning literature—will always be beneficial. In this study, we integrate adaptive sampling and variable selection features into a sequential procedure for modeling correlated response data. Besides reporting the statistical properties of the proposed procedure, we also use both synthesized and real data sets to demonstrate the usefulness of our method.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13160
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:2:p:496-507
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().