EconPapers    
Economics at your fingertips  
 

Designing precision medicine trials to yield a greater population impact

Ying‐Qi Zhao and Michael L. LeBlanc

Biometrics, 2020, vol. 76, issue 2, 643-653

Abstract: Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/biom.13161

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:2:p:643-653

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:643-653