A fast score test for generalized mixture models
Rui Duan,
Yang Ning,
Shuang Wang,
Bruce G. Lindsay,
Raymond J. Carroll and
Yong Chen
Biometrics, 2020, vol. 76, issue 3, 811-820
Abstract:
In biomedical studies, testing for homogeneity between two groups, where one group is modeled by mixture models, is often of great interest. This paper considers the semiparametric exponential family mixture model proposed by Hong et al. (2017) and studies the score test for homogeneity under this model. The score test is nonregular in the sense that nuisance parameters disappear under the null hypothesis. To address this difficulty, we propose a modification of the score test, so that the resulting test enjoys the Wilks phenomenon. In finite samples, we show that with fixed nuisance parameters the score test is locally most powerful. In large samples, we establish the asymptotic power functions under two types of local alternative hypotheses. Our simulation studies illustrate that the proposed score test is powerful and computationally fast. We apply the proposed score test to an UK ovarian cancer DNA methylation data for identification of differentially methylated CpG sites.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13204
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:3:p:811-820
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().