Learning‐based biomarker‐assisted rules for optimized clinical benefit under a risk constraint
Yanqing Wang,
Ying‐Qi Zhao and
Yingye Zheng
Biometrics, 2020, vol. 76, issue 3, 853-862
Abstract:
Novel biomarkers, in combination with currently available clinical information, have been sought to improve clinical decision making in many branches of medicine, including screening, surveillance, and prognosis. Statistical methods are needed to integrate such diverse information to develop targeted interventions that balance benefit and harm. In the specific setting of disease detection, we propose novel approaches to construct a multiple‐marker‐based decision rule by directly optimizing a benefit function, while controlling harm at a maximally tolerable level. These new approaches include plug‐in and direct‐optimization‐based algorithms, and they allow for the construction of both nonparametric and parametric rules. A study of asymptotic properties of the proposed estimators is provided. Simulation results demonstrate good clinical utilities for the resulting decision rules under various scenarios. The methods are applied to a biomarker study in prostate cancer surveillance.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13199
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:3:p:853-862
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().