A unified evaluation of differential vaccine efficacy
Erin E. Gabriel,
Michael C. Sachs,
Dean A. Follmann and
Therese M‐L. Andersson
Biometrics, 2020, vol. 76, issue 4, 1053-1063
Abstract:
Many infectious diseases are well prevented by proper vaccination. However, when a vaccine is not completely efficacious, there is great interest in determining how the vaccine effect differs in subgroups conditional on measured immune responses postvaccination and also according to the type of infecting agent (eg, strain of a virus). The former is often called correlate of protection (CoP) analysis, while the latter has been called sieve analysis. We propose a unified framework for simultaneously assessing CoP and sieve effects of a vaccine in a large Phase III randomized trial. We use flexible parametric models treating times to infection from different agents as competing risks and estimated maximum likelihood to fit the models. The parametric models under competing risks allow for estimation of both cumulative incidence‐based contrasts and instantaneous rates. We outline the assumptions with which we can link the observable data to the causal contrasts of interest, propose hypothesis testing procedures, and evaluate our proposed methods in an extensive simulation study.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13211
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:4:p:1053-1063
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().