Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study
Yue Wang,
Joseph G. Ibrahim and
Hongtu Zhu
Biometrics, 2020, vol. 76, issue 4, 1109-1119
Abstract:
Many biomedical studies have identified important imaging biomarkers that are associated with both repeated clinical measures and a survival outcome. The functional joint model (FJM) framework, proposed by Li and Luo in 2017, investigates the association between repeated clinical measures and survival data, while adjusting for both high‐dimensional images and low‐dimensional covariates based on the functional principal component analysis (FPCA). In this paper, we propose a novel algorithm for the estimation of FJM based on the functional partial least squares (FPLS). Our numerical studies demonstrate that, compared to FPCA, the proposed FPLS algorithm can yield more accurate and robust estimation and prediction performance in many important scenarios. We apply the proposed FPLS algorithm to a neuroimaging study. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/biom.13219
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:4:p:1109-1119
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().