A Bayesian nonparametric testing procedure for paired samples
Luz Adriana Pereira,
Daniel Taylor‐Rodríguez and
Luis Gutiérrez
Biometrics, 2020, vol. 76, issue 4, 1133-1146
Abstract:
We propose a Bayesian hypothesis testing procedure for comparing the distributions of paired samples. The procedure is based on a flexible model for the joint distribution of both samples. The flexibility is given by a mixture of Dirichlet processes. Our proposal uses a spike‐slab prior specification for the base measure of the Dirichlet process and a particular parametrization for the kernel of the mixture in order to facilitate comparisons and posterior inference. The joint model allows us to derive the marginal distributions and test whether they differ or not. The procedure exploits the correlation between samples, relaxes the parametric assumptions, and detects possible differences throughout the entire distributions. A Monte Carlo simulation study comparing the performance of this strategy to other traditional alternatives is provided. Finally, we apply the proposed approach to spirometry data collected in the United States to investigate changes in pulmonary function in children and adolescents in response to air polluting factors.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/biom.13234
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:4:p:1133-1146
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().