EconPapers    
Economics at your fingertips  
 

Semiparametric modelling and estimation of covariate‐adjusted dependence between bivariate recurrent events

Jing Ning, Chunyan Cai, Yong Chen, Xuelin Huang and Mei‐Cheng Wang

Biometrics, 2020, vol. 76, issue 4, 1229-1239

Abstract: A time‐dependent measure, termed the rate ratio, was proposed to assess the local dependence between two types of recurrent event processes in one‐sample settings. However, the one‐sample work does not consider modeling the dependence by covariates such as subject characteristics and treatments received. The focus of this paper is to understand how and in what magnitude the covariates influence the dependence strength for bivariate recurrent events. We propose the covariate‐adjusted rate ratio, a measure of covariate‐adjusted dependence. We propose a semiparametric regression model for jointly modeling the frequency and dependence of bivariate recurrent events: the first level is a proportional rates model for the marginal rates and the second level is a proportional rate ratio model for the dependence structure. We develop a pseudo‐partial likelihood to estimate the parameters in the proportional rate ratio model. We establish the asymptotic properties of the estimators and evaluate the finite sample performance via simulation studies. We illustrate the proposed models and methods using a soft tissue sarcoma study that examines the effects of initial treatments on the marginal frequencies of local/distant sarcoma recurrence and the dependence structure between the two types of cancer recurrence.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13229

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:4:p:1229-1239

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:76:y:2020:i:4:p:1229-1239