Nonnegative decomposition of functional count data
Daniel Backenroth,
Russell T. Shinohara,
Jennifer A. Schrack and
Jeff Goldsmith
Biometrics, 2020, vol. 76, issue 4, 1273-1284
Abstract:
We present a novel decomposition of nonnegative functional count data that draws on concepts from nonnegative matrix factorization. Our decomposition, which we refer to as NARFD (nonnegative and regularized function decomposition), enables the study of patterns in variation across subjects in a highly interpretable manner. Prototypic modes of variation are estimated directly on the observed scale of the data, are local, and are transparently added together to reconstruct observed functions. This contrasts with generalized functional principal component analysis, an alternative approach that estimates functional principal components on a transformed scale, produces components that typically vary across the entire functional domain, and reconstructs observations using complex patterns of cancellation and multiplication of functional principal components. NARFD is implemented using an alternating minimization algorithm, and we evaluate our approach in simulations. We apply NARFD to an accelerometer dataset comprising observations of physical activity for healthy older Americans.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13220
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:4:p:1273-1284
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().