Objective prior distributions for Jolly‐Seber models of zero‐augmented data
Robert M. Dorazio
Biometrics, 2020, vol. 76, issue 4, 1285-1296
Abstract:
Statistical models of capture‐recapture data that are used to estimate the dynamics of a population are known collectively as Jolly‐Seber (JS) models. State‐space versions of these models have been developed for the analysis of zero‐augmented data that include the capture histories of the observed individuals and an arbitrarily large number of all‐zero capture histories. The number of all‐zero capture histories must be sufficiently large to include the unknown number N of individuals in the population that were ever alive during all sampling periods. This definition of N is equivalent to the “superpopulation” of individuals described in several JS models. To fit JS models of zero‐augmented data, practitioners often assume a set of independent, uniform prior distributions for the recruitment parameters. However, if the number of capture histories is small compared to N, these uniform priors can exert considerable influence on the posterior distributions of N and other parameters because the uniform priors induce a highly skewed prior on N. In this article, I derive a class of prior distributions for the recruitment parameters of the JS model that can be used to specify objective prior distributions for N, including the discrete‐uniform and the improper scale priors as special cases. This class of priors also may be used to specify prior knowledge about recruitment while still preserving the conditions needed to induce an objective prior on N. I use analyses of simulated and real data to illustrate the inferential benefits of this class of prior distributions and to identify circumstances where these benefits are most likely to be realized.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13221
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:76:y:2020:i:4:p:1285-1296
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().