On computation of semiparametric maximum likelihood estimators with shape constraints
Yudong Wang,
Zhi‐Sheng Ye and
Hongyuan Cao
Biometrics, 2021, vol. 77, issue 1, 113-124
Abstract:
Large sample theory of semiparametric models based on maximum likelihood estimation (MLE) with shape constraint on the nonparametric component is well studied. Relatively less attention has been paid to the computational aspect of semiparametric MLE. The computation of semiparametric MLE based on existing approaches such as the expectation‐maximization (EM) algorithm can be computationally prohibitive when the missing rate is high. In this paper, we propose a computational framework for semiparametric MLE based on an inexact block coordinate ascent (BCA) algorithm. We show theoretically that the proposed algorithm converges. This computational framework can be applied to a wide range of data with different structures, such as panel count data, interval‐censored data, and degradation data, among others. Simulation studies demonstrate favorable performance compared with existing algorithms in terms of accuracy and speed. Two data sets are used to illustrate the proposed computational method. We further implement the proposed computational method in R package BCA1SG, available at CRAN.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13266
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:1:p:113-124
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().