Analyzing wearable device data using marked point processes
Yuchen Yang and
Mei‐Cheng Wang
Biometrics, 2021, vol. 77, issue 1, 54-66
Abstract:
This paper introduces two sets of measures as exploratory tools to study physical activity patterns: active‐to‐sedentary/sedentary‐to‐active rate function (ASRF/SARF) and active/sedentary rate function (ARF/SRF). These two sets of measures are complementary to each other and can be effectively used together to understand physical activity patterns. The specific features are illustrated by an analysis of wearable device data from National Health and Nutrition Examination Survey (NHANES). A two‐level semiparametric regression model for ARF and the associated activity magnitude is developed under a unified framework using the marked point process formulation. The inactive and active states measured by accelerometers are treated as a 0‐1 point process, and the activity magnitude measured at each active state is defined as a marked variable. The commonly encountered missing data problem due to device nonwear is referred to as “window censoring,” which is handled by a proper estimation approach that adopts techniques from recurrent event data. Large sample properties of the estimator and comparison between two regression models as measurement frequency increases are studied. Simulation and NHANES data analysis results are presented. The statistical inference and analysis results suggest that ASRF/SARF and ARF/SRF provide useful analytical tools to practitioners for future research on wearable device data.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13269
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:1:p:54-66
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().