Scalable Bayesian matrix normal graphical models for brain functional networks
Suprateek Kundu and
Benjamin B. Risk
Biometrics, 2021, vol. 77, issue 2, 439-450
Abstract:
Recently, there has been an explosive growth in graphical modeling approaches for estimating brain functional networks. In a detailed study, we show that surprisingly, standard graphical modeling approaches for fMRI data may not yield accurate estimates of the brain network due to the inability to suitably account for temporal correlations. We propose a novel Bayesian matrix normal graphical model that jointly models the temporal covariance and the brain network under a separable structure for the covariance to obtain improved estimates. The approach is implemented via an efficient optimization algorithm that computes the maximum‐a‐posteriori network estimates having desirable theoretical properties and which is scalable to high dimensions. The proposed method leads to substantial gains in network estimation accuracy compared to standard brain network modeling approaches as illustrated via extensive simulations. We apply the method to resting state fMRI data from the Human Connectome Project involving a large number of time scans and brain regions, to study the relationships between fluid intelligence and functional connectivity, where it is not computationally feasible to apply existing matrix normal graphical models. Our proposed approach led to the detection of differences in connectivity between high and low fluid intelligence groups, whereas these differences were less pronounced or absent using the graphical lasso.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13319
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:2:p:439-450
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().