Optimality of testing procedures for survival data in the nonproportional hazards setting
Andrea Arfè,
Brian Alexander and
Lorenzo Trippa
Biometrics, 2021, vol. 77, issue 2, 587-598
Abstract:
Most statistical tests for treatment effects used in randomized clinical trials with survival outcomes are based on the proportional hazards assumption, which often fails in practice. Data from early exploratory studies may provide evidence of nonproportional hazards, which can guide the choice of alternative tests in the design of practice‐changing confirmatory trials. We developed a test to detect treatment effects in a late‐stage trial, which accounts for the deviations from proportional hazards suggested by early‐stage data. Conditional on early‐stage data, among all tests that control the frequentist Type I error rate at a fixed α level, our testing procedure maximizes the Bayesian predictive probability that the study will demonstrate the efficacy of the experimental treatment. Hence, the proposed test provides a useful benchmark for other tests commonly used in the presence of nonproportional hazards, for example, weighted log‐rank tests. We illustrate this approach in simulations based on data from a published cancer immunotherapy phase III trial.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13315
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:2:p:587-598
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().