Latent Ornstein‐Uhlenbeck models for Bayesian analysis of multivariate longitudinal categorical responses
Trung Dung Tran,
Emmanuel Lesaffre,
Geert Verbeke and
Joke Duyck
Biometrics, 2021, vol. 77, issue 2, 689-701
Abstract:
We propose a Bayesian latent Ornstein‐Uhlenbeck (OU) model to analyze unbalanced longitudinal data of binary and ordinal variables, which are manifestations of fewer continuous latent variables. We focus on the evolution of such latent variables when they continuously change over time. Existing approaches are limited to data collected at regular time intervals. Our proposal makes use of an OU process for the latent variables to overcome this limitation. We show that assuming real eigenvalues for the drift matrix of the OU process, as is frequently done in practice, can lead to biased estimates and/or misleading inference when the true process is oscillating. In contrast, our proposal allows for both real and complex eigenvalues. We illustrate our proposed model with a motivating dataset, containing patients with amyotrophic lateral sclerosis disease. We were interested in how bulbar, cervical, and lumbar functions evolve over time.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13292
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:2:p:689-701
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().