Parametric g‐formula implementations for causal survival analyses
Lan Wen,
Jessica G. Young,
James M. Robins and
Miguel A. Hernán
Biometrics, 2021, vol. 77, issue 2, 740-753
Abstract:
The g‐formula can be used to estimate the survival curve under a sustained treatment strategy. Two available estimators of the g‐formula are noniterative conditional expectation and iterative conditional expectation. We propose a version of the iterative conditional expectation estimator and describe its procedures for deterministic and random treatment strategies. Also, because little is known about the comparative performance of noniterative and iterative conditional expectation estimators, we explore their relative efficiency via simulation studies. Our simulations show that, in the absence of model misspecification and unmeasured confounding, our proposed iterative conditional expectation estimator and the noniterative conditional expectation estimator are similarly efficient, and that both are at least as efficient as the classical iterative conditional expectation estimator. We describe an application of both noniterative and iterative conditional expectation to answer “when to start” treatment questions using data from the HIV‐CAUSAL Collaboration.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13321
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:2:p:740-753
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().