Flexible link functions in a joint hierarchical Gaussian process model
Weiji Su,
Xia Wang and
Rhonda D. Szczesniak
Biometrics, 2021, vol. 77, issue 2, 754-764
Abstract:
Many longitudinal studies often require jointly modeling a biomarker and an event outcome, in order to provide more accurate inference and dynamic prediction of disease progression. Cystic fibrosis (CF) studies have illustrated the benefits of these models, primarily examining the joint evolution of lung‐function decline and survival. We propose a novel joint model within the shared‐parameter framework that accommodates nonlinear lung‐function trajectories, in order to provide more accurate inference on lung‐function decline over time and to examine the association between evolution of lung function and risk of a pulmonary exacerbation (PE) event recurrence. Specifically, a two‐level Gaussian process (GP) is used to estimate the nonlinear longitudinal trajectories and a flexible link function is introduced for a more accurate depiction of the binary process on the event outcome. Bayesian model assessment is used to evaluate each component of the joint model in simulation studies and an application to longitudinal data on patients receiving care from a CF center. A nonlinear structure is suggested by both longitudinal continuous and binary evaluations. Including a flexible link function improves model fit to these data. The proposed hierarchical GP model with a flexible power link function where Laplace distribution is the baseline (spep) has the best fit of all joint models considered, characterizing how accelerated lung‐function decline corresponds to increased odds of experiencing another PE.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13291
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:2:p:754-764
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().