EconPapers    
Economics at your fingertips  
 

Bayesian variable selection for non‐Gaussian responses: a marginally calibrated copula approach

Nadja Klein and Michael Stanley Smith

Biometrics, 2021, vol. 77, issue 3, 809-823

Abstract: We propose a new highly flexible and tractable Bayesian approach to undertake variable selection in non‐Gaussian regression models. It uses a copula decomposition for the joint distribution of observations on the dependent variable. This allows the marginal distribution of the dependent variable to be calibrated accurately using a nonparametric or other estimator. The family of copulas employed are “implicit copulas” that are constructed from existing hierarchical Bayesian models widely used for variable selection, and we establish some of their properties. Even though the copulas are high dimensional, they can be estimated efficiently and quickly using Markov chain Monte Carlo. A simulation study shows that when the responses are non‐Gaussian, the approach selects variables more accurately than contemporary benchmarks. A real data example in the Web Appendix illustrates that accounting for even mild deviations from normality can lead to a substantial increase in accuracy. To illustrate the full potential of our approach, we extend it to spatial variable selection for fMRI. Using real data, we show our method allows for voxel‐specific marginal calibration of the magnetic resonance signal at over 6000 voxels, leading to an increase in the quality of the activation maps.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13355

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:3:p:809-823

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:77:y:2021:i:3:p:809-823