EconPapers    
Economics at your fingertips  
 

Bayesian compositional regression with structured priors for microbiome feature selection

Liangliang Zhang, Yushu Shi, Robert R. Jenq, Kim‐Anh Do and Christine B. Peterson

Biometrics, 2021, vol. 77, issue 3, 824-838

Abstract: The microbiome plays a critical role in human health and disease, and there is a strong scientific interest in linking specific features of the microbiome to clinical outcomes. There are key aspects of microbiome data, however, that limit the applicability of standard variable selection methods. In particular, the observed data are compositional, as the counts within each sample have a fixed‐sum constraint. In addition, microbiome features, typically quantified as operational taxonomic units, often reflect microorganisms that are similar in function, and may therefore have a similar influence on the response variable. To address the challenges posed by these aspects of the data structure, we propose a variable selection technique with the following novel features: a generalized transformation and z‐prior to handle the compositional constraint, and an Ising prior that encourages the joint selection of microbiome features that are closely related in terms of their genetic sequence similarity. We demonstrate that our proposed method outperforms existing penalized approaches for microbiome variable selection in both simulation and the analysis of real data exploring the relationship of the gut microbiome to body mass index.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13335

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:3:p:824-838

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:77:y:2021:i:3:p:824-838