Ultra high‐dimensional semiparametric longitudinal data analysis
Brittany Green,
Heng Lian,
Yan Yu and
Tianhai Zu
Biometrics, 2021, vol. 77, issue 3, 903-913
Abstract:
As ultra high‐dimensional longitudinal data are becoming ever more apparent in fields such as public health and bioinformatics, developing flexible methods with a sparse model is of high interest. In this setting, the dimension of the covariates can potentially grow exponentially as exp(n1/2) with respect to the number of clusters n. We consider a flexible semiparametric approach, namely, partially linear single‐index models, for ultra high‐dimensional longitudinal data. Most importantly, we allow not only the partially linear covariates but also the single‐index covariates within the unknown flexible function estimated nonparametrically to be ultra high dimensional. Using penalized generalized estimating equations, this approach can capture correlation within subjects, can perform simultaneous variable selection and estimation with a smoothly clipped absolute deviation penalty, and can capture nonlinearity and potentially some interactions among predictors. We establish asymptotic theory for the estimators including the oracle property in ultra high dimension for both the partially linear and nonparametric components, and we present an efficient algorithm to handle the computational challenges. We show the effectiveness of our method and algorithm via a simulation study and a yeast cell cycle gene expression data.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13348
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:3:p:903-913
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().