Nonparametric matrix response regression with application to brain imaging data analysis
Wei Hu,
Tianyu Pan,
Dehan Kong and
Weining Shen
Biometrics, 2021, vol. 77, issue 4, 1227-1240
Abstract:
With the rapid growth of neuroimaging technologies, a great effort has been dedicated recently to investigate the dynamic changes in brain activity. Examples include time course calcium imaging and dynamic brain functional connectivity. In this paper, we propose a novel nonparametric matrix response regression model to characterize the nonlinear association between 2D image outcomes and predictors such as time and patient information. Our estimation procedure can be formulated as a nuclear norm regularization problem, which can capture the underlying low‐rank structure of the dynamic 2D images. We present a computationally efficient algorithm, derive the asymptotic theory, and show that the method outperforms other existing approaches in simulations. We then apply the proposed method to a calcium imaging study for estimating the change of fluorescent intensities of neurons, and an electroencephalography study for a comparison in the dynamic connectivity covariance matrices between alcoholic and control individuals. For both studies, the method leads to a substantial improvement in prediction error.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13362
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:77:y:2021:i:4:p:1227-1240
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().