Simultaneous variable selection and estimation for joint models of longitudinal and failure time data with interval censoring
Fengting Yi,
Niansheng Tang and
Jianguo Sun
Biometrics, 2022, vol. 78, issue 1, 151-164
Abstract:
This paper discusses variable selection in the context of joint analysis of longitudinal data and failure time data. A large literature has been developed for either variable selection or the joint analysis but there exists only limited literature for variable selection in the context of the joint analysis when failure time data are right censored. Corresponding to this, we will consider the situation where instead of right‐censored data, one observes interval‐censored failure time data, a more general and commonly occurring form of failure time data. For the problem, a class of penalized likelihood‐based procedures will be developed for simultaneous variable selection and estimation of relevant covariate effects for both longitudinal and failure time variables of interest. In particular, a Monte Carlo EM (MCEM) algorithm is presented for the implementation of the proposed approach. The proposed method allows for the number of covariates to be diverging with the sample size and is shown to have the oracle property. An extensive simulation study is conducted to assess the finite sample performance of the proposed approach and indicates that it works well in practical situations. An application is also provided.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13387
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:1:p:151-164
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().