EconPapers    
Economics at your fingertips  
 

Density estimation for circular data observed with errors

Marco Di Marzio, Stefania Fensore, Agnese Panzera and Charles C. Taylor

Biometrics, 2022, vol. 78, issue 1, 248-260

Abstract: Until now the problem of estimating circular densities when data are observed with errors has been mainly treated by Fourier series methods. We propose kernel‐based estimators exhibiting simple construction and easy implementation. Specifically, we consider three different approaches: the first one is based on the equivalence between kernel estimators using data corrupted with different levels of error. This proposal appears to be totally unexplored, despite its potential for application also in the Euclidean setting. The second approach relies on estimators whose weight functions are circular deconvolution kernels. Due to the periodicity of the involved densities, it requires ad hoc mathematical tools. Finally, the third one is based on the idea of correcting extra bias of kernel estimators which use contaminated data and is essentially an adaptation of the standard theory to the circular case. For all the proposed estimators, we derive asymptotic properties, provide some simulation results, and also discuss some possible generalizations and extensions. Real data case studies are also included.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13431

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:1:p:248-260

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:248-260