EconPapers    
Economics at your fingertips  
 

A nonparametric Bayesian model for estimating spectral densities of resting‐state EEG twin data

Brian Hart, Michele Guindani, Stephen Malone and Mark Fiecas

Biometrics, 2022, vol. 78, issue 1, 313-323

Abstract: Electroencephalography (EEG) is a noninvasive neuroimaging modality that captures electrical brain activity many times per second. We seek to estimate power spectra from EEG data that ware gathered for 557 adolescent twin pairs through the Minnesota Twin Family Study (MTFS). Typically, spectral analysis methods treat time series from each subject separately, and independent spectral densities are fit to each time series. Since the EEG data were collected on twins, it is reasonable to assume that the time series have similar underlying characteristics, so borrowing information across subjects can significantly improve estimation. We propose a Nested Bernstein Dirichlet prior model to estimate the power spectrum of the EEG signal for each subject by smoothing periodograms within and across subjects while requiring minimal user input to tuning parameters. Furthermore, we leverage the MTFS twin study design to estimate the heritability of EEG power spectra with the hopes of establishing new endophenotypes. Through simulation studies designed to mimic the MTFS, we show our method out‐performs a set of other popular methods.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13393

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:1:p:313-323

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:78:y:2022:i:1:p:313-323