Bayesian group sequential enrichment designs based on adaptive regression of response and survival time on baseline biomarkers
Yeonhee Park,
Suyu Liu,
Peter F. Thall and
Ying Yuan
Biometrics, 2022, vol. 78, issue 1, 60-71
Abstract:
Precision medicine relies on the idea that, for a particular targeted agent, only a subpopulation of patients is sensitive to it and thus may benefit from it therapeutically. In practice, it is often assumed based on preclinical data that a treatment‐sensitive subpopulation is known, and moreover that the agent is substantively efficacious in that subpopulation. Due to important differences between preclinical settings and human biology, however, data from patients treated with a new targeted agent often show that one or both of these assumptions are false. This paper provides a Bayesian randomized group sequential enrichment design that compares an experimental treatment to a control based on survival time and uses early response as an ancillary outcome to assist with adaptive variable selection and enrichment. Initially, the design enrolls patients under broad eligibility criteria. At each interim decision, submodels for regression of response and survival time on a baseline covariate vector and treatment are fit; variable selection is used to identify a covariate subvector that characterizes treatment‐sensitive patients and determines a personalized benefit index, and comparative superiority and futility decisions are made. Enrollment of each cohort is restricted to the most recent adaptively identified treatment‐sensitive patients. Group sequential decision cutoffs are calibrated to control overall type I error and account for the adaptive enrollment restriction. The design provides a basis for precision medicine by identifying a treatment‐sensitive subpopulation, if it exists, and determining whether the experimental treatment is superior to the control in that subpopulation. A simulation study shows that the proposed design reliably identifies a sensitive subpopulation, yields much higher generalized power compared to several existing enrichment designs and a conventional all‐comers group sequential design, and is robust.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13421
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:1:p:60-71
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().