EconPapers    
Economics at your fingertips  
 

Nonparametric estimation of Spearman's rank correlation with bivariate survival data

Svetlana K. Eden, Chun Li and Bryan E. Shepherd

Biometrics, 2022, vol. 78, issue 2, 421-434

Abstract: We study rank‐based approaches to estimate the correlation between two right‐censored variables. With end‐of‐study censoring, it is often impossible to nonparametrically identify the complete bivariate survival distribution, and therefore it is impossible to nonparametrically compute Spearman's rank correlation. As a solution, we propose two measures that can be nonparametrically estimated. The first measure is Spearman's correlation in a restricted region. The second measure is Spearman's correlation for an altered but estimable joint distribution. We describe population parameters for these measures and illustrate how they are similar to and different from the overall Spearman's correlation. We propose consistent estimators of these measures and study their performance through simulations. We illustrate our methods with a study assessing the correlation between the time to viral failure and the time to regimen change among persons living with HIV in Latin America who start antiretroviral therapy.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/biom.13453

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:2:p:421-434

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:421-434