Information‐incorporated Gaussian graphical model for gene expression data
Huangdi Yi,
Qingzhao Zhang,
Cunjie Lin and
Shuangge Ma
Biometrics, 2022, vol. 78, issue 2, 512-523
Abstract:
In the analysis of gene expression data, network approaches take a system perspective and have played an irreplaceably important role. Gaussian graphical models (GGMs) have been popular in the network analysis of gene expression data. They investigate the conditional dependence between genes and “transform” the problem of estimating network structures into a sparse estimation of precision matrices. When there is a moderate to large number of genes, the number of parameters to be estimated may overwhelm the limited sample size, leading to unreliable estimation and selection. In this article, we propose incorporating information from previous studies (for example, those deposited at PubMed) to assist estimating the network structure in the present data. It is recognized that such information can be partial, biased, or even wrong. A penalization‐based estimation approach is developed, shown to have consistency properties, and realized using an effective computational algorithm. Simulation demonstrates its competitive performance under various information accuracy scenarios. The analysis of TCGA lung cancer prognostic genes leads to network structures different from the alternatives.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13428
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:2:p:512-523
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().