EconPapers    
Economics at your fingertips  
 

A kernel regression model for panel count data with nonparametric covariate functions

Yang Wang and Zhangsheng Yu

Biometrics, 2022, vol. 78, issue 2, 586-597

Abstract: The local kernel pseudo‐partial likelihood is employed for estimation in a panel count model with nonparametric covariate functions. An estimator of the derivative of the nonparametric covariate function is derived first, and the nonparametric function estimator is then obtained by integrating the derivative estimator. Uniform consistency rates and pointwise asymptotic normality are obtained for the local derivative estimator under some regularity conditions. Moreover, the baseline function estimator is shown to be uniformly consistent. Demonstration of the asymptotic results strongly relies on the modern empirical theory, which generally does not require the Poisson assumption. Simulation studies also illustrate that the local derivative estimator performs well in a finite‐sample regardless of whether the Poisson assumption holds. We also implement the proposed methodology to analyze a clinical study on childhood wheezing.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/biom.13440

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:2:p:586-597

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:586-597