Sparse linear discriminant analysis for multiview structured data
Sandra E. Safo,
Eun Jeong Min and
Lillian Haine
Biometrics, 2022, vol. 78, issue 2, 612-623
Abstract:
Classification methods that leverage the strengths of data from multiple sources (multiview data) simultaneously have enormous potential to yield more powerful findings than two‐step methods: association followed by classification. We propose two methods, sparse integrative discriminant analysis (SIDA), and SIDA with incorporation of network information (SIDANet), for joint association and classification studies. The methods consider the overall association between multiview data, and the separation within each view in choosing discriminant vectors that are associated and optimally separate subjects into different classes. SIDANet is among the first methods to incorporate prior structural information in joint association and classification studies. It uses the normalized Laplacian of a graph to smooth coefficients of predictor variables, thus encouraging selection of predictors that are connected. We demonstrate the effectiveness of our methods on a set of synthetic datasets and explore their use in identifying potential nontraditional risk factors that discriminate healthy patients at low versus high risk for developing atherosclerosis cardiovascular disease in 10 years. Our findings underscore the benefit of joint association and classification methods if the goal is to correlate multiview data and to perform classification.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/biom.13458
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:2:p:612-623
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().