Causal interaction trees: Finding subgroups with heterogeneous treatment effects in observational data
Jiabei Yang,
Issa J. Dahabreh and
Jon A. Steingrimsson
Biometrics, 2022, vol. 78, issue 2, 624-635
Abstract:
We introduce causal interaction tree (CIT) algorithms for finding subgroups of individuals with heterogeneous treatment effects in observational data. The CIT algorithms are extensions of the classification and regression tree algorithm that use splitting criteria based on subgroup‐specific treatment effect estimators appropriate for observational data. We describe inverse probability weighting, g‐formula, and doubly robust estimators of subgroup‐specific treatment effects, derive their asymptotic properties, and use them to construct splitting criteria for the CIT algorithms. We study the performance of the algorithms in simulations and implement them to analyze data from an observational study that evaluated the effectiveness of right heart catheterization for critically ill patients.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13432
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:2:p:624-635
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().