EconPapers    
Economics at your fingertips  
 

Identifying regions of inhomogeneities in spatial processes via an M‐RA and mixture priors

Marco H. Benedetti, Veronica J. Berrocal and Naveen N. Narisetty

Biometrics, 2022, vol. 78, issue 2, 798-811

Abstract: Soils have been heralded as a hidden resource that can be leveraged to mitigate and address some of the major global environmental challenges. Specifically, the organic carbon stored in soils, called soil organic carbon (SOC), can, through proper soil management, help offset fuel emissions, increase food productivity, and improve water quality. As collecting data on SOC are costly and time‐consuming, not much data on SOC are available, although understanding the spatial variability in SOC is of fundamental importance for effective soil management. In this manuscript, we propose a modeling framework that can be used to gain a better understanding of the dependence structure of a spatial process by identifying regions within a spatial domain where the process displays the same spatial correlation range. To achieve this goal, we propose a generalization of the multiresolution approximation (M‐RA) modeling framework of Katzfuss originally introduced as a strategy to reduce the computational burden encountered when analyzing massive spatial datasets. To allow for the possibility that the correlation of a spatial process might be characterized by a different range in different subregions of a spatial domain, we provide the M‐RA basis functions weights with a two‐component mixture prior with one of the mixture components a shrinking prior. We call our approach the mixture M‐RA. Application of the mixture M‐RA model to both stationary and nonstationary data show that the mixture M‐RA model can handle both types of data, can correctly establish the type of spatial dependence structure in the data (e.g., stationary versus not), and can identify regions of local stationarity.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13446

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:2:p:798-811

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:78:y:2022:i:2:p:798-811