Restricted function‐on‐function linear regression model
Ruiyan Luo and
Xin Qi
Biometrics, 2022, vol. 78, issue 3, 1031-1044
Abstract:
The usual function‐on‐function linear regression model depicts the association between functional variables in the whole rectangular region and the value of response curve at any point is influenced by the entire trajectory of the predictor curve. But in addition to this, there are cases where the value of the response curve at a point is only influenced by the value of the predictor curve in a subregion, such as the historical relationship and the short‐term association. We will consider the restricted function‐on‐function regression model, where the value of response curve at any point is influenced by a subtrajectory of the predictor. We have two major purposes. First, we propose a novel estimation procedure that is more accurate and computational efficient for the restricted function‐on‐function model with a given subregion. Second, as the subregion is seldom specified in practice, we propose a subregion selection procedure that can lead to models with better interpretation and predictive performance. Algorithms are developed for both model estimation and subregion selection.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13463
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:3:p:1031-1044
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().