Optimization of sampling designs for pedigrees and association studies
Olivier David,
Arnaud Le Rouzic and
Christine Dillmann
Biometrics, 2022, vol. 78, issue 3, 1056-1066
Abstract:
In many studies, related individuals are phenotyped in order to infer how their genotype contributes to their phenotype, through the estimation of parameters such as breeding values or locus effects. When it is not possible to phenotype all the individuals, it is important to properly sample the population to improve the precision of the statistical analysis. This article studies how to optimize such sampling designs for pedigrees and association studies. Two sampling methods are developed, stratified sampling and D optimality. It is found that it is important to take account of mutation when sampling pedigrees with many generations: as the size of mutation effects increases, optimized designs sample more individuals in late generations. Optimized designs for association studies tend to improve the joint estimation of breeding values and locus effects, all the more as sample size is low and the genetic architecture of the trait is simple. When the trait is determined by few loci, they are reminiscent of classical experimental designs for regression models and tend to select homozygous individuals. When the trait is determined by many loci, locus effects may be difficult to estimate, even if an optimized design is used.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13476
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:3:p:1056-1066
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().