EconPapers    
Economics at your fingertips  
 

Rejoinder to discussions of “distributional independent component analysis for diverse neuroimaging modalities”

Ben Wu, Subhadip Pal, Jian Kang and Ying Guo

Biometrics, 2022, vol. 78, issue 3, 1122-1126

Abstract: We thank the editors for organizing the discussions and the discussants for insightful comments. Our rejoinder provides results and comments to address the questions raised in the discussions. Specifically, we present results showing DICA largely demonstrates better or comparable stability as compared with standard ICA. We also validate the DICA in real fMRI application by showing DICA generally shows higher reliability in reproducibly recovering major brain functional networks as compared with the standard ICA. We provide details on the computational complexity of the method. The computational cost of DICA is very reasonable with the analysis of the fMRI and DTI data easily implementable on a PC or laptop. Finally, we include discussions on several directions for extending the DICA framework in the future.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13588

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:3:p:1122-1126

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:1122-1126