Modeling semi‐competing risks data as a longitudinal bivariate process
Daniel Nevo,
Deborah Blacker,
Eric B. Larson and
Sebastien Haneuse
Biometrics, 2022, vol. 78, issue 3, 922-936
Abstract:
As individuals age, death is a competing risk for Alzheimer's disease (AD) but the reverse is not the case. As such, studies of AD can be placed within the semi‐competing risks framework. Central to semi‐competing risks, and in contrast to standard competing risks , is that one can learn about the dependence structure between the two events. To‐date, however, most methods for semi‐competing risks treat dependence as a nuisance and not a potential source of new clinical knowledge. We propose a novel regression‐based framework that views the two time‐to‐event outcomes through the lens of a longitudinal bivariate process on a partition of the time scales of the two events. A key innovation of the framework is that dependence is represented in two distinct forms, local and global dependence, both of which have intuitive clinical interpretations. Estimation and inference are performed via penalized maximum likelihood, and can accommodate right censoring, left truncation, and time‐varying covariates. An important consequence of the partitioning of the time scale is that an ambiguity regarding the specific form of the likelihood contribution may arise; a strategy for sensitivity analyses regarding this issue is described. The framework is then used to investigate the role of gender and having ≥1 apolipoprotein E (APOE) ε4 allele on the joint risk of AD and death using data from the Adult Changes in Thought study.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13480
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:3:p:922-936
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().