WiSER: Robust and scalable estimation and inference of within‐subject variances from intensive longitudinal data
Christopher A. German,
Janet S. Sinsheimer,
Jin Zhou and
Hua Zhou
Biometrics, 2022, vol. 78, issue 4, 1313-1327
Abstract:
The availability of vast amounts of longitudinal data from electronic health records (EHRs) and personal wearable devices opens the door to numerous new research questions. In many studies, individual variability of a longitudinal outcome is as important as the mean. Blood pressure fluctuations, glycemic variations, and mood swings are prime examples where it is critical to identify factors that affect the within‐individual variability. We propose a scalable method, within‐subject variance estimator by robust regression (WiSER), for the estimation and inference of the effects of both time‐varying and time‐invariant predictors on within‐subject variance. It is robust against the misspecification of the conditional distribution of responses or the distribution of random effects. It shows similar performance as the correctly specified likelihood methods but is 103 ∼ 105 times faster. The estimation algorithm scales linearly in the total number of observations, making it applicable to massive longitudinal data sets. The effectiveness of WiSER is evaluated in extensive simulation studies. Its broad applicability is illustrated using the accelerometry data from the Women's Health Study and a clinical trial for longitudinal diabetes care.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13506
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:78:y:2022:i:4:p:1313-1327
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().