An efficient data integration scheme for synthesizing information from multiple secondary datasets for the parameter inference of the main analysis
Chixiang Chen,
Ming Wang and
Shuo Chen
Biometrics, 2023, vol. 79, issue 4, 2947-2960
Abstract:
Many observational studies and clinical trials collect various secondary outcomes that may be highly correlated with the primary endpoint. These secondary outcomes are often analyzed in secondary analyses separately from the main data analysis. However, these secondary outcomes can be used to improve the estimation precision in the main analysis. We propose a method called multiple information borrowing (MinBo) that borrows information from secondary data (containing secondary outcomes and covariates) to improve the efficiency of the main analysis. The proposed method is robust against model misspecification of the secondary data. Both theoretical and case studies demonstrate that MinBo outperforms existing methods in terms of efficiency gain. We apply MinBo to data from the Atherosclerosis Risk in Communities study to assess risk factors for hypertension.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/biom.13858
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:2947-2960
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X
Access Statistics for this article
More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().