EconPapers    
Economics at your fingertips  
 

Latent trajectory models for spatio‐temporal dynamics in Alaskan ecosystems

Xinyi Lu, Mevin B. Hooten, Ann M. Raiho, David K. Swanson, Carl A. Roland and Sarah E. Stehn

Biometrics, 2023, vol. 79, issue 4, 3664-3675

Abstract: The Alaskan landscape has undergone substantial changes in recent decades, most notably the expansion of shrubs and trees across the Arctic. We developed a Bayesian hierarchical model to quantify the impact of climate change on the structural transformation of ecosystems using remotely sensed imagery. We used latent trajectory processes to model dynamic state probabilities that evolve annually, from which we derived transition probabilities between ecotypes. Our latent trajectory model accommodates temporal irregularity in survey intervals and uses spatio‐temporally heterogeneous climate drivers to infer rates of land cover transitions. We characterized multi‐scale spatial correlation induced by plot and subplot arrangements in our study system. We also developed a Pólya–Gamma sampling strategy to improve computation. Our model facilitates inference on the response of ecosystems to shifts in the climate and can be used to predict future land cover transitions under various climate scenarios.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/biom.13832

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:biomet:v:79:y:2023:i:4:p:3664-3675

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0006-341X

Access Statistics for this article

More articles in Biometrics from The International Biometric Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3664-3675