The equilibrium of the bargaining game and core convergence theorem on an exchange economy with limited traders
Jianguo Chen
Bulletin of Economic Research, 2023, vol. 75, issue 1, 83-99
Abstract:
Debreu and Scarf (1963), Hildenbrand (1974), Aumann (1964), Dierker (1975), Bewley (1973), and others have shown that the core of an exchange economy with infinitely many or finitely many traders converges. However, an exchange economy does not always consist of infinitely many or finitely many traders. This note provides proof of the core convergence theorem on an exchange economy with limited traders by a bargaining game methodology. The main contribution of this note is to innovate the equilibrium solution to the bargaining game in the exchange economy. In this note, the concept of common payoff is introduced; in the bargaining game of a coalition on its common payoff, all coalition members will get the same distribution, thus the distribution scheme of the cooperation surplus of the exchange economy is determined. This note shows that the bargaining game among the traders on the distribution of the cooperation surplus will make the pure exchange economy with limited traders converge to the Walrasian equilibrium, all the allocations other than the Walrasian equilibrium will be eliminated from the core of this economy.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/boer.12341
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:buecrs:v:75:y:2023:i:1:p:83-99
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0307-3378
Access Statistics for this article
More articles in Bulletin of Economic Research from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().