On Testing the Random-Walk Hypothesis: A Model-Comparison Approach
Ali F Darrat and
Maosen Zhong
The Financial Review, 2000, vol. 35, issue 3, 105-24
Abstract:
The main intention of this paper is to investigate, with new daily data, whether prices in the two Chinese stock exchanges (Shanghai and Shenzhen) follow a random-walk process as required by market efficiency. We use two different approaches, the standard variance-ratio test of Lo and MacKinlay (1988) and a model-comparison test that compares the ex post forecasts from a NAIVE model with those obtained from several alternative models: ARIMA, GARCH and the Artificial Neural Network (ANN). To evaluate ex post forecasts, we utilize several procedures including RMSE, MAE, Theil's U, and encompassing tests. In contrast to the variance-ratio test, results from the model-comparison approach are quite decisive in rejecting the random-walk hypothesis in both Chinese stock markets. Moreover, our results provide strong support for the ANN as a potentially useful device for predicting stock prices in emerging markets. Copyright 2000 by MIT Press.
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:finrev:v:35:y:2000:i:3:p:105-24
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0732-8516
Access Statistics for this article
The Financial Review is currently edited by Cynthia J. Campbell and Arnold R. Cowan
More articles in The Financial Review from Eastern Finance Association Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().