A machine learning‐based analysis of 311 requests in the Miami‐Dade County
Shaoming Cheng,
Sukumar Ganapati,
Giri Narasimhan and
Farzana Beente Yusuf
Growth and Change, 2022, vol. 53, issue 4, 1627-1645
Abstract:
This paper illustrates the application of machine learning algorithms in predictive analytics for local governments using administrative data. The developed and tested machine learning predictive algorithm overcomes known limitations of the conventional ordinary least squares method. Such limitations include but not limited to imposed linearity, presumed causality with independent variables as presumed causes and dependent variables as presume result, likely high multicollinearity among features, and spatial autocorrelation. The study applies the algorithms to 311 non‐emergency service requests in the context of Miami‐Dade County. The algorithms are applied to predict the volume of 311 service requests and the community characteristics affecting the volume across Census tract neighborhoods. Four common families of algorithms and an ensemble of them are applied. They are random forest, support vector machines, lasso and elastic‐net regularized generalized linear models, and extreme gradient boosting. Two feature selection methods, namely Boruta and fscaret, are applied to identify the significant community characteristics. The results show that the machine learning algorithms capture spatial autocorrelation and clustering. The features generated by fscaret algorithms are parsimonious in predicting the 311 service request volume.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/grow.12578
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:growch:v:53:y:2022:i:4:p:1627-1645
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0017-4815
Access Statistics for this article
Growth and Change is currently edited by Dan Rickman and Barney Warf
More articles in Growth and Change from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().