EconPapers    
Economics at your fingertips  
 

Mixed time series approaches for forecasting the daily number of hospital blood collections

Xinli Zhang, Xin Zhao, Xiaoying Mou and Mingying Tan

International Journal of Health Planning and Management, 2021, vol. 36, issue 5, 1714-1726

Abstract: Purpose Provide new methods to predict the number of hospital blood collections. Methods The registered outpatients and blood collection patients in a large hospital in China in the period from March 2018 to April 2019 were enrolled in the study. Firstly, we analyzed the time series characteristics of the daily blood collection patients and their correlation with the number of daily outpatients. Then, we used the time series ARIMA and linear regression methods to build the periodic trend model of the blood collections number prediction and the regression prediction model with the number of registered outpatients as an independent variable. Finally, we built a combined prediction model considering mixed time series to predict the number of blood collections in the hospital. Results The combined prediction model has a higher accuracy and can better explore the characteristics of the number of blood collections compared with other models. It can also give some suggestions for a reasonable blood collection management. Conclusion The combined prediction model of mixed time series can reflect the change in the blood collections number due to the influence of internal and external factors and can realize the blood collection prediction with a higher accuracy providing a new method for the prediction of the blood collections number.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/hpm.3246

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:ijhplm:v:36:y:2021:i:5:p:1714-1726

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0749-6753

Access Statistics for this article

International Journal of Health Planning and Management is currently edited by Calum Paton

More articles in International Journal of Health Planning and Management from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:ijhplm:v:36:y:2021:i:5:p:1714-1726