Functionality Versus “Typical Product” Measures of Technological Progress
Liqiu Deng and
Eric D. Williams
Journal of Industrial Ecology, 2011, vol. 15, issue 1, 108-121
Abstract:
Technological progress and adoption are fundamentally interconnected with environmental challenges faced by society. At the product level, researchers often explore the interplay between technological change and the environment by tracking trends in impacts per unit functionality—for example, gasoline consumed per distance traveled by a vehicle. In this article, we explore an alternative measure: “typical product.” A typical product measure accounts for changes in consumers’ demand and use of products as product quality improves—for example, gasoline consumed for a typical driving pattern for a vehicle. We compare and contrast functionality and typical product measures through a case study of electricity use to fabricate Intel desktop microprocessors from 1995 to 2006. The functionality normalization is measured in terms of electricity use per transistor produced. Results show rapid and sustained exponential decrease. The “typical product” measures electricity use per typical desktop microprocessor of a given year (e.g., a Pentium II in 1998, a Pentium IV in 2002). Results show that, despite fluctuations, energy use per typical microprocessor is roughly constant over the 12‐year period. The explanation of this result is that although technological progress dramatically reduces the energy needed per transistor, it also induces demand for more powerful chips, which contain many more transistors. The typical product measure has applications in defining functional units in life cycle assessment, characterizing rebound effects, and measuring energy efficiency trends.
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1530-9290.2010.00306.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:inecol:v:15:y:2011:i:1:p:108-121
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1088-1980
Access Statistics for this article
Journal of Industrial Ecology is currently edited by Reid Lifset
More articles in Journal of Industrial Ecology from Yale University
Bibliographic data for series maintained by Wiley Content Delivery ().