Intercompany Energy Integration
Michael Hiete,
Jens Ludwig and
Frank Schultmann
Journal of Industrial Ecology, 2012, vol. 16, issue 5, 689-698
Abstract:
Reusing heat through process integration in heat exchanger networks has long been a key measure for increasing energy efficiency in energy‐intensive industries. Thermal pinch analysis is commonly used for a systematic matching of process streams and thus planning of optimal process integration in large chemical plants. The possible savings increase with the amount of heat and the number of integrated process streams. Therefore co‐ siting of several companies in a symbiotic network opens new opportunities for process integration even in small and medium‐size enterprises (SMEs), but also introduces new challenges. Thermal pinch analysis is extended here to account for piping distances and fluctuations and limited availability of energy flows by adding additional costs for the piping system and a backup utility system in the optimization function. Cooperative game theory is proposed to derive a sharing of savings between the partners of the industrial symbiosis that is optimal for each partner and should prevent partners from leaving the network because of higher benefits in a subgroup or alone. It is argued that knowledge about the optimality of a network for each partner creates trust between the partners that is a necessary base for the long‐term commitment needed in industrial symbioses. An exemplary symbiotic network combining the production of pulp and woody biomass energy carriers is used to illustrate the proposed approaches.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/j.1530-9290.2012.00462.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:inecol:v:16:y:2012:i:5:p:689-698
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1088-1980
Access Statistics for this article
Journal of Industrial Ecology is currently edited by Reid Lifset
More articles in Journal of Industrial Ecology from Yale University
Bibliographic data for series maintained by Wiley Content Delivery ().