Implementing Trans‐Boundary Infrastructure‐Based Greenhouse Gas Accounting for Delhi, India
Abel Chavez,
Anu Ramaswami,
Dwarakanath Nath,
Ravi Guru and
Emani Kumar
Journal of Industrial Ecology, 2012, vol. 16, issue 6, 814-828
Abstract:
Community‐wide greenhouse gas (GHG) emissions accounting is confounded by the relatively small spatial size of cities compared to nations—due to which, energy use in essential infrastructures serving cities, such as commuter and airline transport, energy supply, water supply, wastewater infrastructures, and others, often occurs outside the boundaries of the cities using them. The trans‐boundary infrastructure supply chain footprint (TBIF) GHG emissions accounting method, tested in eight U.S. cities, incorporates supply chain aspects of these trans‐boundary infrastructures serving cities, and is akin to an expanded geographic GHG emissions inventory. This article shows the results from applying the TBIF method in the rapidly developing city of Delhi, India. The objectives of this research are to (1) describe the data availability for implementing the TBIF method within a rapidly industrializing country, using the case of Delhi, India; (2) identify methodological differences in implementation of the TBIF method between Indian versus U.S. cities; and (3) compare broad energy use metrics between Delhi and U.S. cities, demonstrated by Denver, Colorado, USA, whose energy use characteristics and TBIF GHG emissions have previously been shown to be similar to U.S. per capita averages. This article concludes that most data required to implement the TBIF method in Delhi are readily available, and the methodology could be translated from U.S. to Indian cities. Delhi's 2009 community‐wide GHG emissions totaled 40.3 million metric tonnes of carbon dioxide equivalents (t CO2‐eq), which are normalized to yield 2.3 t CO2‐eq per capita; nationally, India reports its average per capita GHG emissions at 1.5 t CO2‐eq. In‐boundary GHG emissions contributed to 68% of Delhi's total, where end use (including electricity) energy in residential buildings, commercial and industrial usage, and fuel used in surface transportation contributed 24%, 19%, and 21%, respectively. The remaining 4% of the in‐boundary GHG emissions were from waste disposal, water and wastewater treatment, and cattle. Trans‐boundary infrastructures were estimated to equal 32% of Delhi's TBIF GHG emissions, with 5% attributed to fuel processing, 3% to air travel, 10% to cement, and 14% to food production outside the city.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1530-9290.2012.00546.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:inecol:v:16:y:2012:i:6:p:814-828
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1088-1980
Access Statistics for this article
Journal of Industrial Ecology is currently edited by Reid Lifset
More articles in Journal of Industrial Ecology from Yale University
Bibliographic data for series maintained by Wiley Content Delivery ().