EconPapers    
Economics at your fingertips  
 

Life Cycle Greenhouse Gas Emissions of Thin‐film Photovoltaic Electricity Generation

Hyung Chul Kim, Vasilis Fthenakis, Jun‐Ki Choi and Damon E. Turney

Journal of Industrial Ecology, 2012, vol. 16, issue s1, S110-S121

Abstract: We present the process and the results of harmonization of greenhouse gas (GHG) emissions during the life cycle of commercial thin‐film photovoltaics (PVs), that is, amorphous silicon (a‐Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). We reviewed 109 studies and harmonized the estimates of GHG emissions by aligning the assumptions, parameters, and system boundaries. During the initial screening we eliminated abstracts, short conference papers, presentations without supporting documentation, and unrelated analyses; 91 studies passed this initial screening. In the primary screening we applied rigorous criteria for completeness of reporting, validity of analysis methods, and modern relevance of the PV system studied. Additionally, we examined whether the product is a commercial one, whether the production line still exists, and whether the study's core data are original or secondary. These screenings produced five studies as the best representations of the carbon footprint of modern thin‐film PV technologies. These were harmonized through alignment of efficiency, irradiation, performance ratio, balance of system, and lifetime. The resulting estimates for carbon footprints are 20, 14, and 26 grams carbon dioxide equivalent per kilowatt‐hour (g CO2‐eq/kWh), respectively, for a‐Si, CdTe, and CIGS, for ground‐mount application under southwestern United States (US‐SW) irradiation of 2,400 kilowatt‐hours per square meter per year (kWh/m2/yr), a performance ratio of 0.8, and a lifetime of 30 years. Harmonization for the rooftop PV systems with a performance ratio of 0.75 and the same irradiation resulted in carbon footprint estimates of 21, 14, and 27 g CO2‐eq/kWh, respectively, for the three technologies. This screening and harmonization rectifies previous incomplete or outdated assessments and clarifies variations in carbon footprints across studies and amongst thin‐film technologies.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
https://doi.org/10.1111/j.1530-9290.2011.00423.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:inecol:v:16:y:2012:i:s1:p:s110-s121

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1088-1980

Access Statistics for this article

Journal of Industrial Ecology is currently edited by Reid Lifset

More articles in Journal of Industrial Ecology from Yale University
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:inecol:v:16:y:2012:i:s1:p:s110-s121