Integrated Material Flow Analysis and Process Modeling to Increase Energy and Water Efficiency of Industrial Cooling Water Systems
Ina Schlei†Peters,
Matthias Gerhard Wichmann,
Ingo†Georg Matthes,
Friedrich†Wilhelm Gundlach and
Thomas Stefan Spengler
Journal of Industrial Ecology, 2018, vol. 22, issue 1, 41-54
Abstract:
Cooling water systems (CWS) are one of the main energy and water using operations in industry. Existing CWS in operation provide high improvement potentials in environmental and economic performance through optimized operation and system control. Industry often fails to realize these potentials, given that the efficiency measures as well as their technical, economic, and ecological impact are mostly unknown because of the lack of appropriate approaches. This article presents a holistic approach to the systematic identification and assessment of efficiency measures that support industry in improving the operation and system control of large†scale CWS consisting of one or multiple cooling towers, heat exchangers, and pumps. Based on material flow analysis coupled with process modeling, a material and energy flow model of CWS is developed. The model enables the investigation of different adjustments in operation of CWS in order to identify and assess specific efficiency measures. The approach is applied to a CWS of a real manufacturing facility. The results show, first, high validity of the approach as compared to a real system. Second, the effectiveness of the approach, given that the model allows fast and simple identification and assessment of efficiency measures that save up to 16% energy and 24% water in the presented case study.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/jiec.12540
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:inecol:v:22:y:2018:i:1:p:41-54
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1088-1980
Access Statistics for this article
Journal of Industrial Ecology is currently edited by Reid Lifset
More articles in Journal of Industrial Ecology from Yale University
Bibliographic data for series maintained by Wiley Content Delivery ().