EconPapers    
Economics at your fingertips  
 

Life Cycle Assessment of Aerogel Manufacture on Small and Large Scales: Weighing the Use of Advanced Materials in Oil Spill Remediation

Osman Karatum, Md Mainul H. Bhuiya, Mary K. Carroll, Ann M. Anderson and Desiree L. Plata

Journal of Industrial Ecology, 2018, vol. 22, issue 6, 1365-1377

Abstract: Recent studies demonstrated that advanced aerogel composites (Aspen Aerogels® Spaceloft® [SL]) have the potential to transform oil remediation via high oil uptake capacity and selectivity, excellent reusability, and high mechanical strength. Understanding the life cycle environmental impacts of advanced aerogels can enable a more holistic decision‐making process when considering oil recovery technologies following a spill. Here, we perform a cradle‐to‐grave streamlined life cycle assessment (LCA) following International Organization for Standardization (ISO) 14040 2006 for SL weighed against the conventional oil sorbent material, polyurethane foam. The model included alternative use and disposal scenarios, such as single or multiple uses, and landfill, incinerator, and waste‐to‐energy (WTE) approaches for cleaning 1 cubic meter (m3) of light crude oil. Results showed that the ideal case for SL application was comprised of multiple use and WTE incineration (68% reduction in material use, approximately 7 × 103 megajoules [MJ] of energy recovery from WTE), but SL offered energy and materials savings even when used once and disposed of via traditional means (i.e., landfill). In addition to evaluating these already‐scaled processes, we performed an anticipatory LCA for the laboratory‐scaled aerogel fabrication process that might inform the sustainable design of next‐generation aerogels. In particular, the model compared rapid supercritical extraction (RSCE) with two conventional supercritical extraction methods—alcohol and carbon dioxide supercritical extraction (ASCE and CSCE, respectively)—for silica aerogel monoliths. Our results showed that RSCE yielded a cumulative energy savings of more than 76 × 103 and 100 × 103 MJ for 1 m3 of monolithic silica aerogel manufacturing compared to ASCE and CSCE, respectively.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/jiec.12720

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:inecol:v:22:y:2018:i:6:p:1365-1377

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1088-1980

Access Statistics for this article

Journal of Industrial Ecology is currently edited by Reid Lifset

More articles in Journal of Industrial Ecology from Yale University
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:inecol:v:22:y:2018:i:6:p:1365-1377