EconPapers    
Economics at your fingertips  
 

Whole‐life embodied carbon in multistory buildings: Steel, concrete and timber structures

Jim Hart, Bernardino D'Amico and Francesco Pomponi

Journal of Industrial Ecology, 2021, vol. 25, issue 2, 403-418

Abstract: Buildings and the construction industry are top contributors to climate change, and structures account for the largest share of the upfront greenhouse gas emissions. While a body of research exists into such emissions, a systematic comparison of multiple building structures in steel, concrete, and timber alternatives is missing. In this article, comparisons are made between mass and whole‐life embodied carbon (WLEC) emissions of building superstructures using identical frame configurations in steel, reinforced concrete, and engineered timber frames. These are assessed and compared for 127 different frame configurations, from 2 to 19 stories. Embodied carbon coefficients for each material and life cycle stage are represented by probability density functions to capture the uncertainty inherent in life cycle assessment. Normalized results show clear differences between the masses of the three structural typologies, with the concrete frame approximately five times the mass of the timber frame, and 50% higher than the steel frame. The WLEC emissions are mainly governed by the upfront emissions (cradle to practical completion), but subsequent emissions are still significant—particularly in the case of timber for which 36% of emissions, on average, occur post‐construction. Results for WLEC are more closely grouped than for masses, with median values for the timber frame, concrete frame, and steel frame of 119, 185, and 228 kgCO2e/m2, respectively. Despite the advantage for timber in this comparison, there is overlap between the results distributions, meaning that close attention to efficient design and procurement is essential. This article met the requirements for a gold–gold JIE data openness badge described in http://jie.click/badges.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/jiec.13139

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:inecol:v:25:y:2021:i:2:p:403-418

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1088-1980

Access Statistics for this article

Journal of Industrial Ecology is currently edited by Reid Lifset

More articles in Journal of Industrial Ecology from Yale University
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:inecol:v:25:y:2021:i:2:p:403-418