EconPapers    
Economics at your fingertips  
 

Scenario analysis of supply‐ and demand‐side solutions for circular economy and climate change mitigation in the global building sector

Stefan Pauliuk, Fabio Carrer, Niko Heeren and Edgar G. Hertwich

Journal of Industrial Ecology, 2024, vol. 28, issue 6, 1699-1715

Abstract: Residential and non‐residential buildings are a major contributor to human well‐being. At the same time, buildings cause 30% of final energy use, 18% of greenhouse gas emissions (GHGE), and about 65% of material accumulation globally. With electrification and higher energy efficiency of buildings, material‐related emissions gain relevance. The circular economy (CE) strategies, narrow, slow, and close, together with wooden buildings, can reduce material‐related emissions. We provide a comprehensive set of building stock transformation scenarios for 10 world regions until 2060, using the resource efficiency climate change model of the stock–flow–service nexus and including the full CE spectrum plus wood‐intensive buildings. The 2020–2050 global cumulative new construction ranges from 150 to 280 billion m2 for residential and 70‐120 billion m2 for non‐residential buildings. Ambitious CE reduces cumulative 2020–2050 primary material demand from 80 to 30 gigatons (Gt) for cement and from 35 to 15 Gt for steel. Lowering floor space demand by 1 m2 per capita leads to global savings of 800‐2500 megatons (Mt) of cement, 300‐1000 Mt of steel, and 3‐10 Gt CO2‐eq, depending on industry decarbonization and CE roll‐out. Each additional Mt of structural timber leads to savings of 0.4‐0.55 Mt of cement, 0.6‐0.85 Mt of steel, and 0.8‐1.8 Mt CO2‐eq of system‐wide GHGE. CE reduces 2020–2050 cumulative GHGE by up to 44%, where the highest contribution comes from the narrow CE strategies, that is, lower floorspace and lightweight buildings. Very low carbon emission trajectories are possible only when combining supply‐ and demand‐side strategies. This article met the requirements for a gold‐gold JIE data openness badge described at http://jie.click/badges.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/jiec.13557

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:inecol:v:28:y:2024:i:6:p:1699-1715

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1088-1980

Access Statistics for this article

Journal of Industrial Ecology is currently edited by Reid Lifset

More articles in Journal of Industrial Ecology from Yale University
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:inecol:v:28:y:2024:i:6:p:1699-1715